
RAD STUDIO
GUIDE FOR
MANAGERS
by Stephen Ball - January 2021

TABLE OF CONTENTS

Introduction …..…………………………………………………………………………………………………..…….…… 02

Part 1 - RAD Studio® in The Evolution of Software Development ..….……..…... 03

From RAD and ASD to Agile 03
Market Trends Impacting Software Development 03
RAD Studio® Today 04
Importance of Interfaces 06
Process-Centric Innovation - The Example of Unit Testing 06
Product-Centric Innovation (It's More Than Just FMX) 07
Innovation Through Partnership 08
Innovation Through Acquisition 08
Modernize or Rebuild? 08
Looking for Safe, Quick Wins That Buy You Time 09
User Interface Testing as a Migration Approach 09
Adding in The Latest Windows 10 Features 10
Designed to Save Money and Time 10

Part 2 - Best of Both Worlds - Why RAD Studio® ………………………………………………..… 12

Evolution of Cross-Platform Development Tools and Approaches 12
Impact of Mobile on Business Processes 13
Reaching Multiple Platforms 14
True Native Versus Hybrid Applications 15
No Compromise - The Best of Cross-Platform AND True Native 16
How FMX Differs From Xamarin Forms 17
Enterprise Data and Remote Data Connections 18
Low-Code Application Platforms and RAD 18

Part 3 - RAD Studio® Today - Investing in The Future …….……………………………….… 20

RAD and DevOps 20
Investing for Both Present and Future Gains 22

Summary …… 22

Beyond This Paper
…… 23

The Embarcadero Way …………………………………………………………………………………………… 24

Introduction

The world of software development thrives on innovative concepts like
Object Orientated Programming (OOP), Agile Development, Continuous
Integration (CI), DevOps, Low-Code, Enterprise & Micro Services, UI / UX
design, and many more.

There is arguably one key concept behind many of these buzzwords, one
that has seen a huge resurgence in recent times. It continues to heavily
influence the modern tooling and processes used in software development
today, and is now being claimed by a broader set of products covering a
host of innovative approaches. That term is Rapid Application Development
(RAD).

With big software firms like Microsoft, Google, Apple, Amazon and
Salesforce, to name just a few, all evangelising RAD approaches, this paper
will explore how RAD is evolving, and how RAD Studio® today continues to
innovate tooling and frameworks and supports the latest development
practices and protocols.

Who Should Read This Paper

This paper will have a broad appeal to CTOs and leaders of software
development teams, and is written for those following or evaluating market
trends and possible solutions to use for both desktop and mobile
applications.

If you have legacy Delphi® or C++Builder® code, this paper is especially
important as it will help you understand how coding has evolved, and
evaluate and harness the value in your existing codebase.

02

RAD Studio® in The Evolution of
Software Development

From RAD and ASD to Agile

Rapid Application Development has seen continuous innovation and a
resurgence recently. RAD has evolved a long way since its popularity
exploded when groundbreaking developer tools like Delphi® and Visual
Studio were launched in 1995 and 1997. These RAD tools, combined with
Adaptive Software Development (ASD) practices that became popular at
the time, enabled the acceleration of Business Process Re-Engineering
(BPR) that coincided with Microsoft Windows' domination of the PC market.

Early exponents of RAD adopted ASD to benefit from shorter product life
cycles, with early feedback from customers based on prototypes that
reduced risk to overall delivery and enabled early versions to return value
sooner into businesses that used them. The evolution of RAD-based
development processes over the last 26 years, and the complementary
assets created, for example, around software design, testing and source
code control, has largely culminated in what we know today as Agile
Development.

Market Trends Impacting Software Development

Alongside the evolution of development processes, the field of software
development has navigated tectonic changes in the last 15 years.

Here are a few of them:

● New mobile platforms and hardware have changed the way we access
and process information and collaborate

● Mobile has overtaken desktop in terms of Internet-connected devices
● App stores dominate the market for mobile application deployment

03

● 32-bit is giving way to 64-bit as both the Apple App Store and Google
Play have switched to 64-bit-only for new apps

● Bring Your Own Device (BYOD) policies have brought about a shift in
device ownership and data access. This has introduced new
deployment and security challenges due to a wider mix of operating
systems and devices (and their varied capabilities) that need to be
addressed by developers.

● PaaS (Platform-as-a-Service) has enabled a new rethinking of
hardware ownership and fault tolerance issues

● PaaS has also enabled more stable SaaS offerings with low-recurring-
cost models

● Users today expect systems to have high interoperability. The drive
towards Open Innovation is such that API’s are expected to coexist or
integrate with other systems enterprise customers have in place.

● Microservices have grown as a way to rapidly enable new capabilities
within systems (e.g. language translation services, push notifications,
weather data, etc.), with HTTPS as the default transport mechanism
and JSON (first standardised in 2013) as the default data structure

● Containerization and DevOps have changed established approaches to
the development and deployment of software, leading to rapid and
continuous deployment models

● Data storage has exploded with the onset of NoSQL and traditional
SQL data storage powering systems. As a result, data is often referred
to as the new oil.

While Microsoft Windows still has a dominant place in today's landscape,
this overview of market trends highlights the environment for software
development today is more diverse than when RAD first emerge and
Windows Desktop monopolized BPR requirements.

RAD Studio® Today

RAD Studio® uses a single code base that compiles to true native code on
Windows, Linux, macOS, iOS and Android. This unique approach provides
both speed and high flexibility in development, and rapid runtime speed.
Time and again, the RAD Studio® approach proves to be 5x faster than other
languages and frameworks. With its single code base, RAD Studio® excels in
ensuring faster times to market across all platforms through shorter
development and testing times.

04

The original designs for the libraries and components in Delphi® have
enabled RAD Studio® to provide long-term code investment security to
developers for over 26 years. Indeed, the patterns are so strong they are
easily identifiable in many languages and frameworks (like C# and .Net) that
have followed since.

If you are not familiar with this approach, then suffice to say the true value
components bring to RAD development is the abstraction of platform APIs
into easy-to-use building blocks that take care of the low-level system calls.
These components are underpinned by libraries that do the heavy lifting of
enabling reusable core functionality (such as runtime libraries for file
system, date time, screen info, etc.).

As market innovations and trends have emerged, the component and object
orientated approach used in RAD Studio®, strongly supported by interfaces,
has enabled the introduction of new features, platforms and capabilities, all
while maintaining a high level of backward compatibility.

05

Cross-Platform Native Libraries by Design

One key contributor to the unique success of RAD Studio® in creating true
native code across multiple platforms is the way interfaces are
implemented in Delphi®.

The way a steering wheel can be used to steer a variety of different vehicles
is an effective metaphor. If you know how it works, you can use the same
tool to drive a truck or boat as easily as you drive a car.

In other words, the interface is the same for the driver, but what happens
under the hood can be radically different. In the same way, developers can
write code that checks for and employs common interfaces, (e.g. the
accelerometer, compass, camera, etc) that are then provided with platform-
specific implementations.

Now let's see how RAD Studio® has enabled developers to continuously ride
the waves of process and platform innovations through examples

Process-Centric Innovation - The Example of Unit
Testing

Unit testing enables continuous testing of code programmatically to help
reduce regression issues and eliminate bugs from the code base. Through
open-source projects that have integrated with the Open Tools API of the
RAD Studio® IDE, developers the world over have been able to see how their
code performs against tests in real time. Unit testing can also be run as part
of a continuous build process, with the results going back into the external
systems.

The introduction of unit testing around the year 2000 also encouraged a
number of developers over time to adopt different design patterns such as
Model View Controller (MVC) andModel View-View Model (MVVM) to
enable easier testing for the logical parts of their systems. While these
approaches haven’t forced immediate changes to existing code, IDEs,
languages or frameworks, they have driven the evolution of how code is
written and also seen the introduction of additional frameworks such as
Spring4D to support complimentary approaches such as dependency
injection.

06

Product-Centric Innovation (It's More Than Just FMX)

While unit testing is about how code is written and which processes are
followed, other innovations require major product enhancements.
September 2011 saw the introduction of FireMonkey (FMX), the cross-
platform framework that at first glance mirrors in many ways the Visual
Component Library (VCL) that enables RAD development for Windows.

Under the hood of FMX, the new components, using the existing updated
runtime, support cross-platform coding with a single code base that works
natively across all platforms. This is no small feat, and the FMX framework
has evolved over the last decade to provide the most comprehensive
framework for single-code native development on iOS,macOS, Android,
Linux, and Windows. This has been supported with additional compilers
added to the product, along with flexible build configurations to support
compilation and packaging directly for app stores from inside the IDE..

Additionally, new features have been introduced, such as Visual Live
Bindings, that enable the RAD binding of user interfaces to data and object
models alike, while other features have evolved, like FireDAC, which enables
broad database connectivity components that work cross-platform. The
component approach used by RAD Studio® means database code that has
worked on Windows for decades is now in reach of mobile platforms,
enabling new life to be rapidly injected into existing code.

RAD Studio® is also using Open Innovation to enable fast-paced
improvement. The new compilers are built using the LLVM project, providing
the fastest runtime performance for each possible platform, and the IDE has
recently introduced support for the Language Server Protocol (LSP). This
standards-based approach is also laying the foundation for a richer
developer experience.

RAD Studio continues today to offer the best available compilers, the
deepest Window API integration of any modern toolchain, and a proven
history of enabling code to port rapidly to the latest platforms as they
become available.

07

Innovation Through Partnership

Some innovations have been realized through partnerships. RAD Studio®

was the first tooling anywhere in the world to enable the Microsoft Desktop
Bridge. This opened the door to the Microsoft store, and also to the latest
enterprise deployment mechanisms for traditional Windows applications.
Since then, early support for Microsoft's new Edge browser has also been
added along with the latest MSIX app packaging.

Innovation Through Acquisition

Embarcadero, now owned by Idera Inc., is part of a rapidly growing
technology group. This has opened the door to the adoption of many more
tools to help developers work faster. Tools like Ranorex, Sencha and Aqua
Data Studio were added to the RAD Studio® Architect product, enabling
developers to automate user interface testing with the powerful Ranorex
tool, develop faster with simplified access to manage a wide range of
databases using Aqua Data Studio, and bring RAD to JavaScript through
Sencha Architect.

In addition, a strong third-party ecosystem of component vendors create
frameworks for using RAD Studio® to provide the compiled backend, with
the same language and code to power web applications.

RAD Studio® continues to evolve with an open framework for enhancing
code and an active third-party ecosystem providing components and add-
ons that support the core features of the IDE, and is now in a renewed
growth stage within an exciting developer-technology-centric group.

Modernize or Rebuild?

If you have existing code built in Delphi® or C++Builder®, the first questions
must be about what use case it is being used for, and whether you will still
be serving that use case going forward. If you will, then there is value in the
code. The next question is how to get the logic from where it is today to
where it can provide future value.

08

The key points when assessing your next steps are:

● Working out what your future system architecture will look like, (e.g.
whether you need to enable remote/mobile access)

● Identifying and managing risk and cost
● Looking at timelines and the future cost of ownership
● What phases this will require

Let's look at a few of these points now.

Looking for Safe, Quick Wins That Buy You Time

One challenge for the continued use of legacy code bases is that often,
coding practices in the company have evolved a long way since the first
version was released. While the code and project works, there may be parts
your team would approach in a different way if it were starting fresh today.

If part of the plan is to modernise your practices with code, then the safest
approach is to use a phased update of the existing code. This keeps a
customer-facing product always available with the latest options, while also
enabling the update towards new practices.

User Interface Testing as a Migration Approach

Returning to code testing, one common desire is to add testing to the code
to ensure it tests faster and more efficiently as part of the development
process. While unit testing is one part (and can easily be added for new code
or new standalone functions and classes), another popular approach is to
look at User Interface Testing. This is where Ranorex (part of the Architect
edition) truly complements VCL development today, and provides an easy-
to-add foundation for checking future code changes. RAD developers create
UI tests for their product to check their applications prior to UA testing.
Because they work on the UI layer, they leave the developer free to
completely rewrite the code underneath if they so desire, and verify
everything by making sure the user experience hasn’t changed.

09

These tests are also a great way to check the software when migrating from
old versions of RAD Studio® to newer versions. Because they work on the
Windows control handle, they even allow you to rearrange the UI without
breaking the tests. Furthermore, common repeatable actions (such as
logging into a system) can be saved and added to multiple tests to enable
extended flexibility and speed up test creation. Because the tests are built
onto the product after it's created, they can also be passed to contributors
outside of the development team to create, freeing up valuable resources.

Adding in The Latest Windows 10 Features

Thanks to the component design of RAD Studio®, it is possible to rapidly
enhance any existing application's UI with a few simple steps. Uniquely, the
RAD Studio® components also make it possible to maintain support for older
versions of Windows, ensuring you don’t block specific users upgrading if
they are stuck on versions older than Windows 10.

One quick win in RAD Studio® that enables Windows 10 support for high-DPI
and multiple monitors running different DPI’s is the replacement of the
traditional TImageList with a new TVirtualImageList and TImageCollection.
By encapsulating the latest per-monitor high-DPI support APIs, these
components provide a no-code update that can serve the correct image
based on the screen resolution for each monitor.

Today, RAD Studio offers the deepest integration of Windows 10 API's on
the market, making it fast and easy for developers to access WinRT, COM
and Win32 features.

Designed to Save Money and Time

Another big advantage of RAD Studio® is that it reduces manpower
requirements, which means keeping fewer skill sets and code bases
updated. This can be a great time and cost saver, especially when trying to
build and deploy to multiple platforms at the same time. RAD Studio® is
seeing a significant surge in interest because of this. An IoT boot camp was
held in 2017 with developers from over 180 countries signing up to the
week-long online conference. There are also great online resources today
like LearnDelphi.org and the EmbarcaderoAcademy.com.

10

Although there is a large global RAD Studio® community, demand in certain
areas can at times outstrip available developers. To cope with this, a
growing number of companies are onboarding and upskilling C# developers
to gain RAD Studio® experience. Two to four weeks typically suffices to get
comfortable with RAD Studio® and the frameworks, depending on the
developer. As C# was written by Anders Hejlsberg, who originally wrote
Delphi®, there is a strong influence in the way C# mirrors the Delphi®

approach, making this a feasible path.

The architecture of RAD Studio® has proven the test of time and continues
to lead the way in innovative cross-platform solutions. Thanks to the
component model that follows the best OOP practices, code is easily
modernised to take advantage of market changes with minimal effort,
providing exceptional long-term investment. Upskilling existing developers
to Delphi® is easily achieved, and as RAD developers are 5x more
productive than they are with other frameworks, it provides exceptional
long-term productivity gains for any team.

11

Best of Both Worlds - Why RAD Studio®

Evolution of Cross-Platform Development Tools and Approaches

Earlier in this paper we looked at innovations impacting software
development over the last 26 years. Time has shown that any emerging
technology typically takes around 10 years to mature from the constant
changes of the early growth cycle as standards gradually solidify. The early
days of any technology carry higher risk, so typically providers look for the
lowest-risk approach to delivering long term solutions. This early market
mindset has led to the launch of a wave of web-centric solutions as a way to
reach into new devices. With a web browser on every device, it was a quick
win to test and establish full market needs.

An early version of RAD Studio® support for the Web came in the late 90’s
when IntraWeb was added to RAD Studio® to enable development for
multiple web formats, including early browsers on phones and PDA’s
(anyone remember WAP?). Since then, web standards have improved,
JavaScript has risen in popularity, and libraries have emerged to provide
faster development and multi-device support that are far closer to the
desktop browser's code standards.

While IntraWeb and other RAD Studio® components like TMS Webcore have
supported RAD web development in Delphi®, many standalone HTML and
JavaScript frameworks have emerged as well. A leading example of this
JavaScript-based approach in the RAD world is Sencha. Sencha offers best-
in-breed JavaScript-based web components with properties to set and link
to, enabling the rapid development of rich web applications. Sencha is used
by and embedded with many solutions around the world, including some
from the likes of Oracle, and since joining the Idera Group, it is included in
the RAD Studio® Architect product.

12

The flexibility to both develop in web languages and compile native code
(which is faster to execute) provides a rich set of capabilities for RAD
Studio® users. However, as there are other options in the market as well, it
would be useful at this point to summarise the differences between these
approaches. Let us also look at the market each platform must reach.

Impact of Mobile on Business Processes

While mobile is not the primary platform for business applications, it’s
receiving intensive focus thanks to a new wave of Business Process
Reengineering that is taking advantage of remote data capture capabilities.
In a drive towards increased automation, many tasks that would traditionally
have been completed centrally are being distributed to field workers to
reduce paperwork and shorten process workflows. A good example of this
would be that of an engineer making a site visit and completing a log entry,
including photos. Mobile services are able to grab additional key data points,
such as geo-coordinates.

With the aim of enabling this new wave of BPR, approaches such as BYOD
have been adopted primarily to improve user adoption, but have also been
embraced by companies as a way of reducing logistics around workforce
enablement. This has become possible thanks to the broad market
penetration of smartphones.

● 38.51% – Android

● 36.27% – Windows

● 14.12% – iOS

● 08.25% – macOS

● 00.83% – Linux

Operating System Market Share as of November 2020

Source: https://gs.statcounter.com/os-market-share

13

Although Android accounts for more users than iOS, the broad adoption of
both frameworks combined with BYOD approaches means software needs
to reach both iOS and Android for successful rollouts. To make things more
complicated, successful products for each platform adhere to different user
interface design guidelines. Failing to adhere to these guidelines can cause
user acceptance friction that lowers the chance of a successful rollout.

In short, to enable a positive mobile-centric BPR capability today, software
engineers need to be able to reach iOS and Android at the same time, with a
look and feel that matches each platform's idiosyncrasies.

Reaching Multiple Platforms

While web technologies provide a quick way to reach a new device and
platform, this approach is limited by browsers and their capabilities, causing
constraints for BPR. Serving web pages is also slow, causing a poor user
experience. For the best reliability, speed, user experience and access to
device features (especially where security permissions are required),
applications need to be installed on the device.

Two approaches are available to create mobile applications: those that are
fully compiled and native, and hybrid applications that run a local web app
inside a shell that provides a browser with enhanced access to features of
the device.

14

True Native Versus Hybrid Applications

True Native code is typically associated with vendor tools such as Xcode,
Visual Studio and Android Studio. The upsides of True Native development
are a native user experience, native speed and performance, and a high level
of security as the code is compiled down to binary. Inversely, using vendor
tools to achieve these benefits means having multiple code bases to
develop and manage, and multiple skill sets and developers, which all lead to
a higher development cost.

This increased time, logistics and costs are a reason many developers look
to scripted/hybrid applications. Hybrid approach enables a single team of
developers to create applications with a lower cost, that reach multiple
platforms at the same time, but trade off security, performance and the
native user experience.

The reason why security and performance are low in scripted/hybrid
applications is because the scripted language needs to be interpreted at
runtime. With the code executing at runtime, this provides a performance
bottleneck and also creates a potential security hole for hackers to exploit.
Additionally, the memory required for web applications is far higher than for
native applications.

Finally, if your application is using a runtime such as .Net or JavaScript
RunTime Webkit or JavaRuntime, this poses an additional security threat.
Runtimes also come with considerable memory overhead, in part through
the addition of a garbage collector for memory management.

15

No Compromise - The Best of Cross-Platform AND True
Native

RAD Studio® brings a unique no-compromise approach to cross-platform
development, enabling one development team to reach every targeted
platform at the same time with a fully compiled True Native application, user
experience, blazing performance, and the highest levels of security.

Using LLVM, every RAD Studio® application
is compiled and highly optimized for each
platform. This means RAD Studio® uses the
same compiler for iOS and macOS that
Xcode uses, and compiles to a lower level
than Java to reach the same CPU and GPU
access games developers target on Android
while also avoiding the need to bloat
memory with a garbage collector.

16

Launched in September 2011 as part of Delphi® XE2, the FireMonkey (FMX)
framework has matured to offer the value of a single code base combined
with the performance and security of a truly native user experience. Platform
defaults for controls make it easy to achieve a platform-specific look and
feel instantly, but still leave the developer in full control to customize where
needed. High productivity features such as FireUI enable developers to
immediately see (on any device) exactly how the UI design will look and
behave as they develop, dramatically shortening development time.

Thanks to the use of a common compiler architecture, full language and
framework support is available on all platforms. RAD Studio® FMX code can
also run on Windows, macOS and Linux, providing even higher levels of
productivity.

RAD Studio® additionally brings the ability to package applications ready for
the notarization or deployment to the leading app stores directly inside the
IDE, simplifying the entire build process.

How FMX Differs From Xamarin Forms

In May 2014, Xamarin Forms was launched in an attempt to provide an
experience similar to FMX while using XAML. This provides Xamarin
developers with a subset of controls for cross-platform development.
Unfortunately, Xamarin falls short when compared with RAD Studio® in two
key areas.

First, language features are limited depending on the platforms (e.g.
generics can not be used on iOS meaning code often needs to be specifically
written for each platform). Second, as Xamarin is based on .Net, it suffers
from inefficient memory management due to a Garbage collector being
added to iOS and a second one running on Android (both the .Net and a Java
one).

17

Enterprise Data and Remote Data Connections

While RAD Studio® provides powerful mobile and desktop application
development options, the complete stack requires serving data to remote
devices.

Over the years, RAD Studio® has introduced a range of methods for enabling
remote access to data. Today, the FireDAC Components enable local or
remote connectivity to over 15 traditional SQL and NoSQL databases (plus
ODBC for any others), and has also been expanded by partners to enable
direct access to 180+ enterprise and big data systems (such as Jira,
Salesforce, Microsoft Teams, Google Drive, eBay, Facebook, Slack, Twitter,
Amazon Marketplace) via standard SQL, with many included as part of the
Enterprise product.

This ability to rapidly link to multiple databases and enterprise data sources
makes RAD Studio® an ideal middle tier. With WebServices, DataSnap
(based on Midas to enable a session's base connections) and RAD Server (a
fully RESTful MEAP with Docker configurations and inbuilt usage analytics
and reporting), there are options for creating and integrating with a range of
systems, and exposing data rapidly, often with zero code.

Low-Code Application Platforms and RAD

Gartner defines a Low-Code Application Platform, or LCAP, as "an
application platform that supports rapid application development,
deployment, execution and management using declarative, high-level
programming abstractions such as model-driven and metadata-based
programming languages, and one-step deployments. LCAPs provide and
support user interfaces (UIs), business processes and data services”.

A growth in interest around LCAPs primarily goes back to the need to
increase business automation through software, with a focus on business
process review and the creation of apps to support a changing business. To
achieve their rapid deployment and cross-platform support, LCAPs use a
form of hybrid application based on web technologies to deliver their
software.

18

Low-code options in the market are often sold based on their promise of
enabling “citizen developers”, where anyone can make an app with a little
training. While the theory is good, the reality dictates a steep learning curve
of a bespoke limited-scope product and a heavy reliance on the vendor to
provide third-party integrations and maintain them. Some systems do
provide advanced web-based RAD tooling for more seasoned developers to
go beyond the simple tasks once they have been upskilled in the
frameworks and models specific to the LCAP. A word of caution: the citizen
developer route can also leave a business's software highly fragmented
without a clear application strategy in place, producing a long-term technical
debt that is hard to shake or manage.

For many of the low-code platforms, the costs substantially mount up
through ongoing subscriptions charged per user for accessing the apps.
Additionally, Gartner cautions that many low-code vendors earn substantial
revenue from professional services, suggesting that professional developers
who know the frameworks, rather than citizen developers, are required to
support the tools. This means the true cost of LCAP ownership is
substantially higher than initially expected for most.

With the history RAD Studio® brings to low-code development and support
for business process review, rapid prototyping of applications and an open
ecosystem for adding any connectivity required (either off-the-shelf or
independently), the question for those looking at LCAPs is where the
investment is better placed. Is upskilling a niche skill set belonging to a
specific LCAP provider, or for enhancing existing team members with
knowledge of Delphi®? With the latter able to deliver native applications that
enable faster and more secure output across the leading platforms, it makes
a compelling case to look at RAD Studio®.

19

RAD Studio® Today - Investing in Your
Future

RAD and DevOps

The current industry trend for development process enhancement is
DevOps. The understanding that developer and deployment teams need to
work together to achieve a successful outcome is driving innovation around
deployment configurations and setup.

The focus of DevOps could be a white paper in itself, but sometimes a
picture does much more than words can. As we touched on earlier in the
paper, because of the open ecosystem linking into RAD Studio®, many
developer productivity tools are available in all stages of development.
A subset of these tools is highlighted in the "Power of RAD Studio®"
infographic on the next page.

20

21

Investing for Both Present and Future Gains

RAD Studio® has arguably the best long-term return for code investment in
any development tooling, and continues to focus on ensuring code is
portable from the older version to the latest.

The roadmap for the future, regularly updated and shared with the
Embarcadero community, shows the adoption of the latest innovations
around Apple Silicon, Microsoft platform API's and AppStore changes, and a
focus on developer experience.

Summary

As we have seen in this paper, the desire for RAD development is growing
with many choices in the market for hybrid or native development. RAD
Studio®'s unique True Native approach brings the fastest speed,
performance and security to mobile development built on the same compiler
technologies used by native-only tool vendors while providing the value of a
single-source cross-platform code base.

RAD Studio® continues to develop and embrace market trends, providing
code security that is second to none in the market, ensuring the highest
possible return on investment for software development.

In response to the leading trends identified, RAD Studio® enables RAD
development for middle tiers and microservices, deployment to the leading
desktop and mobile app stores, and wide-ranging data connectivity to both
SQL and NoSQL databases as well as leading enterprise systems.

RAD Studio®’s ability to offer a unique solution in the market, along with a
framework that has already proven able to expand without compromise to
Windows, macOS, iOS, Android and Linux, points to a bright and secure
future for developers choosing RAD Studio®.

22

Beyond This Paper

While not strictly the scope of this paper, it is worth adding a few notes for
how developer productivity has been enhanced in RAD Studio in recent
years.

RAD Studio now includes compilers, enabling native app development into
Windows (32-bit and 64-bit). Linux (64-bit), Android (32-bit and 64-bit) iOS
(64-bit) and macOS (64-bit). All compiled from a single code base, reducing
testing and management costs across all target platforms.

Developers connecting into the latest version of the IDE will benefit from
many developer productivity updates in the IDE too, including:

• Integrated source code repository support for Git, SVN and
Mercurial
• A modernised IDE layout and optional Dark Style
• Larger memory support to support compiling even larger
projects
• LSP (Language Server Protocol) support that enables faster
coding with background processing of Code Completion, and
error insight tasks
• And more…

For further information, please contact an Embarcadero sales
representative.

23

The Embarcadero Way
Single-source, native multi-platform software development

The RAD Studio IDE and frameworks enable you to write your code in
modern Delphi or C++ languages, and compile your single code base to
natively target Windows, Linux, macOS, iOS, and Android.

Design it, Build it, Run it - Today!

